Semantic-Oriented 3D Model Classification and Retrieval Using Gaussian Processes

نویسندگان

  • Boyong GAO
  • Sanyuan ZHANG
  • Xiang PAN
چکیده

The need of retrieving 3D models is constantly emerging. To improve the performance of a shape-based 3D model retrieval system, an approach is introduced to classify and retrieve 3D model by integrating shape features and semantic information. First, a new type of shape feature based on 2D views (called ZA) is proposed. Then we use Gaussian processes as supervised learning to mode the mapping from low-level features to query concepts. At last the method ranks models by the overall distance determined by a weighted sum of the semantic distance and the shape feature distance. Experimental results show that the performance of the 3D model’s multiclass classifier using proposed method is significantly higher than those of other supervised learning methods, and the retrieval can capture the query model’s high-level semantics, the retrieval performance is improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

Scalable Gaussian Processes for Supervised Hashing

We propose a flexible procedure for large-scale image search by hash functions with kernels. Our method treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present an efficient inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and paral...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

An Attribute-based Model for Semantic Retrieval

This paper introduces a knowledge-oriented approach for modelling semantic search. The modelling approach represents both semantic and textual data in one unifying framework, referred to as the probabilistic object-relational content modelling framework. The framework facilitates the transformation of “term-only” retrieval models into “semantic-aware” retrieval models that consist of semantic p...

متن کامل

3D Model Retrieval Based on Semantic and Shape Indexes

Classifying 3D models into classes is an important step in 3D model retrieval process. However, most classification system does not include semantic information. In this paper, a new method has been proposed to classify and to retrieve 3D model using semantic concepts and ontology. First, we use the machine learning methods to label 3D models by k-means algorithm in shape indexes space. Second,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011